

0040-4039(94)01694-1

Catalytic Asymmetric Hydrosilylation of Conjugated Dienes: Effective Control of Regio- and Enantioselectivities

Yasuo Hatanaka,* Ken-ichi Goda, Futoshi Yamashita, and Tamejiro Hiyama[†]

Sagami Chemical Research Center 4-4-1 Nishiohnuma, Sagamihara, Kanagawa, 229, Japan [†]Research Laboratory of Resources Utilization, Tokyo Institute of Technology 4259 Nagatsuda, Midori-ku, Yokohama, 227, Japan

Abstract: Hydrosilylation of (E)-1-phenyl-1,3-butadiene with HSiPh_nX_{3-n} (X = Cl, F; n = 1, 2) was catalyzed by palladium catalyst generated in situ from $(\eta^3-C_3H_5PdCl)_2$ and (R)-2-diphenylphosphino-1,1'-binaphthyl derivatives (2), giving optically active (Z)-1-phenyl-1-silyl-2-butenes (1) in good yields. The regio- and enantioselectivities of the reaction was found to be strongly affected by the structure of the hydrosilane and the phosphine ligand.

Optically active allylsilanes bearing a chiral carbon directly bonded to silicon are useful chiral building blocks for the synthesis of a wide range of optically active compounds.¹ Hayashi and his co-workers described an approach to these compounds which is based on palladium-catalyzed asymmetric hydrosilylation of conjugated dienes with trichlorosilane.² Recently, they have used MOP (2, Y = OMe)³ as a chiral ligand to attain high enantioselectivity of hydrosilylation. We have also found that asymmetric hydrosilylation of conjugated dienens, catalyzed by a palladium complex coordinated with (*R*)-2-diphenylphosphino-1,1'-binaphthyls (2), gives optically active allylsilanes 1.⁴ We report here that the enantio- and the regioselectivities of the reaction are decisively influenced by the kind of the hydrosilane and the substituent Y of 2.

Hydrosilylation of (E)-1-phenyl-1,3-butadiene (4.5 mmol) with a hydrosilane (5.0 mmol) smoothly took place in the presence of $(\eta^3-C_3H_5PdCl)_2$ (1.5 x 10⁻² mmol) and (R)-2-hydroxy-2'-diphenylphosphino-1,1'binaphthyl (2a)^{3a} (3.0 x 10⁻² mmol) without solvent at 20 °C, giving (S)-(Z)-1-phenyl-1-silyl-2-butene (1) in good yields. The product was treated with excess methyllithium, purified by silica-gel column chromatography (hexane) and then analyzed by HPLC using chiral column (Daicel CHIRALCEL-OD, hexane) to determine the enantiomer excess (ee).⁵ Results summarized in Table 1 apparently show that the substituent on the hydrosilane exerts a strong influence on the enantioselectivity as well as the regioselectivity. The highest ee was obtained with HSiPh₂F, which gave a quantitative yield of (S)-1a with 66% ee (entry 1). Use of HSiPhF₂, 7982

HSiPh₂Cl, or HSiPhCl₂ gave 1 with lower ee (entries 2-4). It is noteworthy that the presence of phenyl group on the hydrosilane is essential for the high regioselectivity. Replacement of the phenyl group by halogen markedly decreased the regioselectivity; the reaction of trichlorosilane gave a mixture of regioisomers (entries 5 and 10).

The most striking feature of the present reaction is that the enantioselectivity can be *reversed* when (R)-2-(*tert*-butyldimethylsilyl)oxy-2'-diphenylphosphino-1,1'-binaphthyl $(2b)^{3b}$ is used as a chiral ligand. Thus, the hydrosilylation of 1-phenyl-1,3-butadiene catalyzed by $(\eta^3-C_3H_5PdCl)_2/2b$ afforded (R)-1 under the same conditions (entries 6-9). The highest ee of (R)-1 (56% ee) was attained by the reaction of HSiPh₂Cl (entry 8). These results suggest that coordination of 2-OH group of phosphine ligand 2a with a silane plays an important role in determining the absolute configuration of allylsilane 1.⁶

Entry	Ligand	Hydrosilane	Conditions	Yield ^b (%)	% ee (confign)	[α] ²⁰ ^c _D
1	2a	HSIPh ₂ F	20 °C, 12 h	96 (1 a)	66 (S)	-6.35°
2	2 a	HSIPhF2	20 °C, 12 h	95 (1b)	45 (S)	- 4.98°
3	2 a	HSIPh2CI	20 °C, 12 h	90 (1a)	34 (S)	-3.25°
4	2 a	HSIPhCI2	50 °C, 12 h	91 (1b)	17 (S)	-
5	2a ^d	HSICI3	80 °C, 12 h	-	-	-
6	2 b	HSIPh ₂ F	20 °C, 3 h	92 (1 a)	9(R)	-
7	2 b	HSIPhF ₂	20 °C, 3 h	91 (1b)	29 (R)	+3.26°
8	2 b	HSIPh ₂ CI	20 °C, 3 h	94 (1a)	56 (R)	+5.36°
9	2 b	HSIPhCl ₂	20 °C, 3 h	97 (1b)	31 (R)	-
10	2 b ″	HSICI3	80 ℃, 12 h	-	-	-

Table 1 Asymmetric Hydrosilylation of (*E*)-1-Phenyl-1,3-butadiene with Phenyl(halo)silanes Catalyzed by (η³-C₃H₅PdCl)₂ / 2^a

^aReactions were carried out with hydrosilane (5.0 mmol) and (*E*)-1-phenyl-1,3-butadiene (4.5 mmol) in the presence of $(\eta^3-C_3H_5PdCl)_2$ (1.5 x 10⁻² mmol) and 2 (3.0 x 10⁻² mmol). ^bIsolated yield. ^c(*c* 0.89-1.12, CHCl₃). ^dInseparable mixture of regio- and stereoisomers was obtained. ^eA 2.5 : 1 mixture of (*Z*)-1-phenyl-1- trichlorolsilyl-1,3-butadiene ((*R*), 15% ee) and (*E*)-1-phenyl-3-trichlorosilyl-1-butene was obtained in 74% yield.

REFERENCES AND NOTES

- 1. (a) Hatanaka, Y.; Goda, K.; Hiyama, T. Tetrahedron Lett. 1994, 35, 1279. (b) Hayashi, T.; Matsumoto, Y.; Itoh, Y. Organometallics, 1987, 6, 884, and references cited therein.
- (a) Hayashi, T.; Kabeta, K.; Yamamoto, T.; Tamao, K.; Kumada, M. Tetrahedron Lett. 1983, 24, 5661.
 (b) Hayashi, T.; Kabeta, K. Ibid. 1985, 26, 3023. (c) Hayashi, T.; Matsumoto, Y.; Morikawa, I.; Ito, Y. Tetrahedron Asymm. 1990, 1, 151.
- 3. (a) Kurz, L.; Lee, G.; Morgans, Jr., D.; Waldyke, M. J.; Wars, T. Tetrahedron Lett. 1990, 31, 6321.
 (b) Uozumi, Y.; Tanahashi, A.; Lee, S. L.; Hayashi, T. J. Org. Chem. 1993, 58, 1945. (c) For asymmetric reactions catalyzed by a palladium complex bearing MOP as a chiral ligand, see: Hayashi, T.; Iwamura, H.; Naito, M.; Matsumoto, Y.; Uozumi, Y. J. Am. Chem. Soc., 1994, 116, 775, and references cited therein.
- 4. This work is presented in part at the 63rd Anniversary Meeting of the Chemical Society of Japan, Tokyo, April, 1992; 1F243.
- 5. To determine the absolute configuration, 1 was converted into known (Z)-1-phenyl-2-buten-1-ol according to the literature procedure: see ref 2c.
- The present work was partially supported by a Grant-in-Aid for Scientific Research on Priority Areas No 5234101 from the Ministry of Education, Science and Culture.