

0040-4039(94)01694-1

Catalytic Asymmetric Hydrosilylation of Conjugated Dienes: Effective Control of Regio- and Enantioselectivities

Yasuo Hatanaka,* Ken-ichi Goda, Futoshi Yamashita, and Tamejiro Hiyamat

Sagami Chemical Research Center 4-4-1 Nishiohnuma, Sagamihara, Kanagawa, 229, Japan i'Research Laboratory of Resources Utilization, Tokyo Institute of Technology 4259 Nagatsuda, Midori-ku, Yokohama, 227, Japan

Abstract: Hydrosilylation of (E) -1-phenyl-1,3-butadiene with $H\{SiPh_nX_{3-n}(X = C1, F; n = 1, 2)\}$ was catalyzed by palladium catalyst generated in situ from $(\eta^3 - C_3H_5PdCl)_2$ and $(R)-2$ diphenylphosphino-l,l'-binaphthyl derivatives (2), giving optically active (Z)-l-phenyl-l-silyl-2 butenes (1) in good yields. The regio- and enantioselectivities of the reaction was found to be strongly affected by the structure of the hydrosilane and the phosphine ligand.

Optically active allylsilanes bearing a chiral carbon directly bonded to silicon are useful chiral building blocks for the synthesis of a wide range of optically active compounds.¹ Hayashi and his co-workers described an approach to these compounds which is based on palladium-catalyzed asymmeytric hydrosilylation of conjugated dienes with trichlorosilane.² Recently, they have used MOP $(2, Y = OMe)^3$ as a chiral ligand to attain high enantioselectivity of hydrosilylation. We have also found that asymmetric hydrosilylation of conjugated dienens, catalyzed by a palladium complex coordinated with (R) -2-diphenylphosphino-1, l'-binaphthyls (2), gives optically active allylsilanes $1⁴$ We report here that the enantio- and the regioselectivities of the reaction are decisively influenced by the kind of the hydrosilane and the substituent Y of 2.

Hydrosilylation of (E)-1-phenyl-1,3-butadiene (4.5 mmol) with a hydrosilane (5.0 mmol) smoothly took place in the presence of $(\eta^3 - C_3H_5PdCl)_2$ (1.5 x 10⁻² mmol) and (R)-2-hydroxy-2'-diphenylphosphino-1,1'binaphthyl (2a)^{3a} (3.0 x 10⁻² mmol) without solvent at 20 °C, giving (S)-(Z)-1-phenyl-1-silyl-2-butene (1) in good yields. The product was treated with excess methyllithium, purified by silica-gel column chromatography (hexane) and then analyzed by HPLC using chiral column (Daicel CHIRALCEL-OD, hexane) to determine the enantiomer excess (ee).⁵ Results summarized in Table 1 apparently show that the substituent on the hydrosilane exerts a strong influence on the enantioselectivity as well as the regioselectivity. The highest ee was obtained with HSiPh₂F, which gave a quantitative yield of (S) -la with 66% ee (entry 1). Use of HSiPhF₂, HSiPh₂Cl, or HSiPhCl₂ gave 1 with lower ee (entries 2-4). It is noteworthy that the presence of phenyl group on the hydrosilane is essential for the high regioselectivity. Replacement of the phenyl group by halogen markedly decreased the regioselectivity; the reaction of trichlorosilane gave a mixture of regioisomers (entries 5 and 10).

The most striking feature of the present reaction is that the enantioselectivity can be *reversed* when (R)-2- *(tert-butyldimethylsilyl)oxy-2'-diphenylphosphino-l,l'-binaphthyl* (2b) 3b is used as a chiral ligand. Thus, the hydrosilylation of 1-phenyl-1,3-butadiene catalyzed by $(m^3-C_3H_5PdCl)/2D$ afforded (R) -1 under the same conditions (entries 6-9). The highest ee of (R) -1 (56% ee) was attained by the reaction of HSiPh₂CI (entry 8). These results suggest that coordination of 2-OH group of phosphine ligand 2a with a silane plays an important role in determining the absolute configuration of allylsilane 1.⁶

Entry	Ligand	Hydrosilane	Conditions	Yield ^o (%)	% ee (confign)	$\left[\alpha\right]^{20}$
1	2a	HSIPh₂F	20 °C, 12 h	96(1a)	66(S)	-6.35°
$\mathbf{2}$	28	HSIPhF,	20 °C, 12 h	95(1b)	45(S)	-4.98°
3	2a	HSIPh ₂ CI	20 °C, 12 h	90(1a)	34(S)	-3.25°
4	2a	HSIPhCI2	50 °C, 12 h	91(1b)	17(S)	
5	$2a^d$	HSICI ₃	80 °C, 12 h		\bullet	
6	2 _b	HSIPh ₂ F	20 ℃, 3 h	92(1a)	9(R)	-
7	2 _b	HSIPhF ₂	20 ℃, 3h	91(1 _b)	29 (R)	$+3.26^\circ$
8	2b	HSIPh ₂ CI	20℃, 3h	94(1a)	56 (R)	$+5.36^\circ$
9	2 _b	HSIPhCI2	20 ℃, 3 h	97(1b)	31(R)	$\overline{}$
10	$2b^{\theta}$	HSICI ₃	80 °C, 12 h			

Table 1 Asymmetric Hydrosilylation of (E)-l-Phenyl-1,3-butadiene with Phenyl(halo)silanes Catalyzed by $(n^3$ -C₃H₅PdCl)₂ / 2^a

^aReactions were carried out with hydrosilane (5.0 mmol) and (E) -1-phenyl-1,3-butadiene (4.5 mmol) in the presence of $(\eta^3$ -C₃H₅PdCl)₂ (1.5 x 10⁻² mmol) and 2 (3.0 x 10⁻² mmol), ^bisolated yield. ^c(c0.89-1.12, CHCl₃). α nseparable mixture of regio- and stereoisomers was obtained. α A 2.5 : 1 mixture of (Z)-1-phenyl-1trichlorolsilyl-1,3-butadiene ((R), 15% ee) and (E)-1-phenyl-3-trichlorosilyl-1-butene was obtained in 74% yield.

REFERENCES AND NOTES

- 1. (a) Hatanaka, Y.; Goda, K.; Hiyama, T. *Tetrahedron Lett.* 1994, *35,* 1279. (b) Hayashi, T.; Matsumoto, Y.; Itoh, Y. *Organometallics,* 1987, 6, 884, and references cited therein.
- 2. (a) Hayashi, T.; Kabeta, K.; Yamamoto,T.; Tamao, K.; Kumada, M. *Tetrahedron Lett.* 1983, *24,* 5661. (b) Hayashi, T.; Kabcta, K. *Ibid.* 1985, *26,* 3023. (c) Hayashi, T.; Matsumoto, Y.; Morikawa, I.; Ito, Y. *Tetrahedron Asymm.* 1990, 1, 151.
- 3. (a) Kurz, L.; Lee, G.; Morgans, Jr., D.; Waldyke, M. J.; Wars, T. *Tetrahedron Lett.* 1990, *31,* 6321. (b) Uozumi, Y.; Tanahashi, A.; Lee, S. L.; Hayashi, *T. J. Org. Chem.* 1993, *58,* 1945. (c) For asymmetric reactions catalyzed by a palladium complex bearing MOP as a chiral ligand, see: Hayashi, T.; Iwamura, H.; Naito, M.; Matsumoto, Y.; Uozumi, *Y. J. Am. Chem. Soc.,* 1994, *116,* 775, and references cited therein.
- 4. This work is presented in part at the 63rd Anniversary Meeting of the Chemical Society of Japan, Tokyo, April, 1992; 1F243.
- 5. To determine the absolute configuration, 1 was converted into known (Z)-l-phenyl-2-buten-1-ol according to the literature procedure: see ref $\overline{2}c$.
- 6. The present work was partially supported by a Grant-in-Aid for Scientific Rcscarch on Priority Areas No 5234 I01 from the Ministry of Education, Science and Culture.

(Received in Japan 3 June 1994)